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An e$cient method for estimating the vibration energy characteristics (such as the
potential energy, kinetic energy, loss factor, etc.) of a forced vibrating structure proposed
earlier (Journal of Sound and <ibration 1998, 217, 351}386) [1] is improved and validated
numerically and experimentally. The main problem of experimental implementation of the
method*di!erentiation of the measured input impedance and mobility with noise
present*is solved with the help of the PadeH approximation by ratios of polynomials. The
results of computer simulation and laboratory experiment conducted on a #exurally
vibrating beam show that the improved method gives reliable estimates of the vibration
energy characteristics at low and middle frequencies.

( 2001 Academic Press
1. INTRODUCTION

A very e$cient method for estimating the energy characteristics of a linear elastic forced
vibrating structure based on minimum measured data has been proposed in references
[1, 2]. To obtain the potential energy, kinetic energy, loss factor, and other energy
characteristics, one does not need, in this method, to measure or compute the vibration
response over the entire structure; neither does one need to possess a vibrational model of
the structure. The only quantities needed are the complex amplitudes of the external forces
(or the input impedances of the structure with respect to these forces) and the complex
amplitudes of velocity response at the driving points. In the simplest case, when the
structure is driven by a single external force, it is su$cient to measure only two quantities:
the amplitude of the force and amplitude of the driving point velocity. It was shown in
references [1, 2] by computer simulation on simple structures (rod, plate) that the proposed
method gave reliable estimates in the low and middle frequency range, but failed at certain
natural frequencies of the structure. That was the main drawback of the method which
excluded practical implementation.

One purpose of the present paper is to work out improved estimates that are free from
this drawback. This is done in the form of correction coe$cients for the estimates obtained
in references [1, 2]. One other purpose of the paper is to describe experimental
implementation of the method. The main problem here is in computing the derivatives with
respect to frequency of the input impedance measured with noise: di!erentiation is known
as an ill-conditioned operation unstable to input errors [3]. This problem is solved by using
the so-called PadeH approximation as a model of the measured input impedance.
0022-460X/01/440683#20 $35.00/0 ( 2001 Academic Press



684 YU. I. BOBROVNITSKII AND M. P. KOROTKOV
A laboratory experiment has also been carried out to verify the method. The experimental
results show that the energy characteristics obtained by the proposed method are in good
agreement with those obtained by independent methods.

The structure of the paper is as follows. In section 2, improved estimates are derived.
Results of the computer simulation demonstrating the accuracy of the improved estimates
are presented in section 3. A laboratory experiment on a #exurally vibrating beam and its
main results are described in section 4. The validity of the method is discussed in section 5.
In section 6, the conclusion is drawn that the proposed economic method for estimating the
energy characteristics of forced vibrating linear elastic structures is now well-based
theoretically and su$ciently veri"ed computationally and experimentally to be used
practically.

2. CORRECTION COEFFICIENTS

2.1. BASIC RELATIONS

In this section, the basic relations of the method are recapitulated*see also references
[1, 2]. Consider a "nite linear elastic system with continuous or lumped parameters and
with any type of damping, performing harmonic vibrations under the action of an external
force f exp(!iut) concentrated at a point x

0
(other types of external loading are considered

in reference [2]). Let the complex amplitude f of the force and the complex amplitude v of
the driving point velocity response be known (or measured). The parameters of the system
as well as the system response at other points are supposed unavailable. According to the
proposed method [1, 2], one can, using the two available quantities, f and v, compute the
exact values of the time-average vibration power dissipated in the system:

U"

1

2
Dv D2Re[z(u)]"

1

2
D f D2Re[y(u)] (1)

and the time-average Lagrange function ¸, i.e., di!erence between time-average kinetic
energy ¹ and potential energy ; of the system:
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Here, the input impedance z (u) and input mobility y(u) are functions of the measured
quantities:

z (u)"f /v, y(u)"v/ f. (3)

Relations (1) and (2) are mathematically correct. If the input quantities, f and v, are known
with absolute accuracy the dissipated power and Lagrange function may be computed with
arbitrarily high accuracy.

All other vibration energy characteristics of the system may be expressed via the data,
f and v, only approximately. The most important are the following approximate equations
derived in references [1, 2] which relate the time-average total vibration energy E to the "rst
derivatives with respect to frequency u of the input impedance and mobility:
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The kinetic energy ¹, the potential energy ; separately, the loss factor g"U/uE, and the
rest of the energy characteristics can be easily obtained as combinations of quantities
(1)}(5). The basic approximate equations (4) and (5) determine the properties and accuracy
of these combinations. Therefore, most attention is paid to the estimation of the total
energy.

The main features of estimates (4) and (5), as established in references [1, 2], are the
following. Estimate (4) of the total energy via the input impedance is very close to the exact
values of E at all low and middle frequencies except in the vicinity of some antiresonance
frequencies, while estimate (5) via the input mobility coincides with the exact values of E at
all low and middle frequencies, but is erroneous in the vicinity of resonance frequencies of
the system.

2.2. INPUT IMPEDANCE REPRESENTATION

The following representation of the input impedance will be used further,

z (u)"z
0

D
r
(u)

D
a
(u)

, (6)

where z
0

is a constant which is independent of frequency such as, for example, the
characteristic impedance, D

r
(u)"0 is the frequency equation of the system under study

which is free of loading at the driving point x
0
, and D

a
(u)"0 is the frequency equation of

the system with point x
0
"xed; subscripts r and a stand for resonance and antiresonance.

Representation (6) can be derived from equations (3) as follows. When in the "rst equation
(3), f"z(u)v, the loading f is zero, the vibration response v of the system may be non-zero
only if impedance z (u) is proportional to the function D

r
(u). On the other hand, when in the

second equation (3), v"y (u) f, the velocity amplitude at the point x
0
is zero, v"0, that is to

say, when the point x
0

is "xed, the system may vibrate non-trivially ( fO0) only if the
mobility y (u)"1/z(u) is proportional to function D

a
(u). Combining these two features

leads to equation (6).
Representation (6) of the input impedance by the ratio of two functions of frequency,

D
r
(u) and D

a
(u), is in fact very general and can be extended to any external loading. For

example, if a linear system is driven by n point forces, it is characterized by a symmetric
n]n*matrix of the input impedances or n]n*matrix of the input mobilities. In a similar
manner as done above, it can be shown that each element of these matrices is proportional
to the ratio of two functions of frequency corresponding to certain combinations of the free
or "xed boundary conditions at n driving points. Examples of representation (6) of the input
impedance with respect to a continuously distributed external load can be found, e.g., in
reference [4].

For elastic systems described by linear di!erential equations and appropriate boundary
conditions, functions D

r
(u) and D

a
(u) in representation (6) are entire functions of frequency.

In particular, for discrete systems, e.g., for FE-models, they are polynomials and therefore
can be expanded into "nite products of linear functions, so that input impedance (6) can be
represented as
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For systems with continuous parameters, the entire functions D
r
(u) and D

a
(u) are expanded

into in"nite products. However, in a bounded region of the complex plane u, i.e., in a "nite
frequency range, they can be approximated by polynomials [5], and input impedance (6)
thus can also be described by a rational function (7). Representations of type (7) are met in
electric circuit theory [6] as well as in mechanics and acoustics [7]. In mathematics, the
representation of functions by ratios of two polynomials is called the PadeH approximation [8].
In section 4, it will be shown that the PadeH approximation of the input impedance measured
with random noise leads to minimum errors in estimating the energy characteristics.

The zeros of the numerators of equations (6) and (7), X
rn
"u

rn
!id

rn
, are the complex

eigenfrequencies of the system with zero load at point x
0
. When the driving frequency is

equal to one of them, u"u
rk

, the input impedance is minimum and the response of the
system at the point x

0
to the external force is maximum (resonance). The zeros of the

denominators of equations (6) and (7), X
am
"u

am
!id

am
, are complex eigenfrequencies of

the system with the point x
0
"xed. At these frequencies, u"u

am
, the input impedance is

maximum, so that the response at the point x
0

to the external force is minimum
(antiresonance).

2.3. CORRECTION COEFFICIENTS FOR E
imp

As mentioned in section 2.1, the estimate E
imp

of the total energy via the input impedance
given in equation (4) works well at low and middle frequencies but is erroneous near, and at,
the antiresonance frequencies. In this section, a correction coe$cient a(u) is derived which
reconstructs the true values E of the total energy from the estimate E

imp
in the vicinity of the

antiresonance frequencies and does not change E
imp

at other frequencies.
To illustrate the point, Figure 1 depicts the imaginary part of the input impedance and

the ratio E
imp

/E of estimate (4) to the exact value of the total energy (solid line in Figure 1(b))
for a system with two degrees of freedom (which is also studied in section 3.2). This system
has one antiresonance frequency u/u

1
"2, and therefore the ratio E

imp
/E being equal to

unity at all frequencies, di!ers from unity considerably in the vicinity of this frequency: at
the frequency u/u

1
"2 the ratio equals !1 (that means that the estimate E

imp
is equal to

the exact value of the energy with opposite sign) and at two frequencies*one to the left and
another to the right of antiresonance frequency*the ratio and, hence, the estimate E

imp
, is

zero. It was directly veri"ed that the curve E
imp

/E in Figure 1(b) does not depend on the type
of external excitation: it is the same for force excitation as well as for kinematic excitation.
Thus, the ratio E

imp
/E is a characteristic of the system and therefore, when speci"ed

independent of the exact value of the total energy, can be adopted as a correction coe$cient
for the energy estimate (4) via the input impedance. In other words, if a function of
frequency, a(u), approximates closely enough to the ratio E

imp
/E, then the quantity

EM
imp

"E
imp

/a (u):E (8)

is the sought improved estimate for the total energy.
In what follows, such a correction function a(u) is obtained from characteristics of the

input impedance, i.e., without using the exact value E. Let u
1

and u
2

be the frequencies at
which the "rst derivative of the imaginary part of the input impedance with respect to
frequency is zero (in Figure 1(a) these frequencies correspond to the minimum and
maximum of the impedance curve). It can easily be veri"ed that the function

a (u)"
(u!u

0
)2!(Du)2

(u!u
0
)2#(Du)2

(9)



Figure 1. Imaginary part of the input impedance (a) and the estimate E
imp

normalized by the exact value E of the
total energy (**) and the correction coe$cient a (]]]]) (b) for the forced vibrating 2-d.o.f. system shown in
Figure 2(b). Angular frequency u is normalized by u

1
"(k

1
/m

1
)1@2.
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with u
0
"(u

2
#u

1
)/2 and Du"(u

2
!u

1
)/2 has all the needed properties: it equals !1 at

u"u
0
, 0 at u"u

1
and u

2
, and #1 outside the vicinity of u

0
. This function is shown in

Figure 1(b) by crosses. It is seen that it approximates the exact curve E
imp

/E rather closely:
the maximum deviation is smaller than 4)5%. Hence, within this accuracy, the improved
estimate EM

imp
in equation (8), where a (u) is given in equation (9), equals the exact value of

the total energy in the vicinity of the antiresonance frequency and does not degrade the
estimate E

imp
at other frequencies.

If the input impedance has several antiresonances, correction coe$cient (9), a
k
(u), may be

computed for each antiresonance frequency u
ak

in the frequency range under study, the
total correction coe$cient a(u) being their product

a (u)"<
k

a
k
(u). (10)
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If a measured input impedance is represented as a PadeH approximant (7), the correction
coe$cient a

k
(u) may also be introduced directly into the derivative of the input impedance

with respect to frequency,

Lz(u)

Lu
"z (u)C+

n

1

u!X
rn

!+
k

(1/a
k
(u))

u!X
ak
D , (11)

before being substituted into equation (4) for estimating the total energy E. Note that for
negative antiresonance frequencies, all a

k
(u) in equation (11) should be equal to unity.

There are other functions that approximate the ratio E
imp

/E and therefore may be used as
correction coe$cients. One such function is appropriate when the input impedance is
available in the analytical form (6):

a (u):
ReD2

a
DD

a
D2

. (12)

However, this function may have zeros at the frequencies that are slightly di!erent from the
roots of equation E

imp
(u)"0. Therefore, improved estimate (8) with coe$cient (12) may

(but not necessarily should) keep uncorrected the energy estimates in very narrow frequency
bands (Du/u being of order of the squared system loss factor) near these root frequencies.
Among possible functions, correction function (9) based on the exact roots of equation
E
imp

(u)"0 is probably the best.
In computer simulation examples of section 3 and in the laboratory experiment of

section 4 it will be shown that improved estimates (8)}(12) via the input impedance give
good approximation to the total energy at each frequency of the low and middle frequency
range, i.e., in the entire range of validity of the estimate E

imp
itself.

2.4. CORRECTION COEFFICIENT FOR E
mob

Similar improved estimates of the total energy E, and hence of other energy
characteristics, can be obtained starting from the second basic equation (5), i.e., from the
estimate E

mob
via the input mobility. This estimate should be corrected only near and at the

resonance frequencies of a system. At other frequencies, including the antiresonance
frequencies, the estimate E

mob
is close enough to the true values of the total energy E and

does not need any improvement.
As has been veri"ed by the authors, the behaviour of the imaginary part of the input

mobility in the vicinity of a resonance frequency is very similar to that of the imaginary part
of the input impedance in the vicinity of an antiresonance frequency*see Figure 1(a). As
a consequence, the ratio of estimate (5) to the exact value of the total energy, E

mob
/E, is

described by the same function of frequency as the ratio E
imp

/E (shown in Figure 1(b)), the
only di!erence being in replacing the antiresonance frequency by the resonance frequency.
Therefore, the correction coe$cient b (u) for the estimate E

mob
of the total energy via the

input mobility is represented by the right-hand side of equation (9), the frequencies u
1

and
u

2
being in this case the two roots of equation E

mob
(u)"0 in the vicinity of the

corresponding resonance frequency. For such b (u), the quantity

EM
mob

&

E
mob

b (u)
:E (13)

is the sought improved estimate.
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For a measured mobility, represented as the PadeH approximation, i.e., as a ratio of two
polynomials of "nite orders (see equation (7)), the correction coe$cient b

k
(u) for each

resonance frequency u
rk

should be introduced into the derivative of the input mobility:

Ly(u)

Lu
"y (u)C+

n

1

u!X
an

!+
k

(1/b
k
(u))

u!X
rk
D . (14)

The substitution of this expression into equation (5) gives the correct estimates for the total
energy in the entire frequency range under study.

3. COMPUTER SIMULATION EXAMPLES

To illustrate the accuracy of the improved estimates obtained, three simple mechanical
systems are studied in this section*a single-degree-of-freedom-system (s.d.o.f.),
a two-degree-of-freedom-system (2-d.o.f.), and, as an example of continuous structures,
a longitudinally vibrating rod*see Figure 2.

3.1. s.d.o.f. SYSTEM

As the "rst example, consider a system with a single degree of freedom, consisting of
a mass m, spring k and viscous damper c (Figure 2(a)). Its input impedance is equal to

z (u)"c#i (k/u!mu)"z
0
[g

0
#i (e~1!e)],

where z
0
"mu

0
"Jmk is the characteristic impedance, e"u/u

0
, u

0
"Jk/m, and

g
0
"c/z

0
is the loss factor of the system at the resonance frequency u

0
. It can be easily

veri"ed that unimproved estimate (4) via the input impedance gives here, i.e., for a system
Figure 2. Forced vibrating mechanical systems studied in computer simulation: s.d.o.f. system (a), 2-d.o.f. system
(b) and Bernoulli rod (c).
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without antiresonances, the exact values of the total energy at all frequencies (u is the
displacement amplitude):

E
imp

"!

1

4
Dv D2 Im

Lz(u)

Lu
"

1

4
k Du D2#

1

4
m Dv D2"E.

Unimproved estimate (5) via the input mobility E
mob

, also gives accurate values of the total
energy everywhere except in the vicinity of the resonance frequency u:u

0
. However,

when improved estimate (13) with the correction coe$cient (9) or (14) is used, the estimated
values of E practically do not di!er from the exact values. Figure 3 shows the loss factor of
the s.d.o.f. system, computed from the equation

g(u)"U/uE,

which is a general de"nition of the loss factor of a linear system vibrating at any frequency
u, with U"c D v D2/2 being the dissipated power. It is seen from Figure 3, that, when
unimproved estimate (5) is used for computing the total energy, the loss factor is erroneous
near u"u

0
(dotted line). However, when the improved equation is used, the estimate g (u)

is indiscernible from the true values of the loss factor (solid line).

3.2. 2-d.o.f. SYSTEM

Consider now a system with two degrees of freedom which has two resonances and one
antiresonance*see Figure 2(b). The energy characteristics of this system, as well as their
unimproved estimates via the input impedance and mobility have been studied in detail in
reference [1]. Here, the e!ects of the correction coe$cients on the estimates are
demonstrated. The system input impedance at the "rst mass is

z(u)"!iz
0
D

r
(u)/D

a
(u),
Figure 3. Loss factor of s.d.o.f. system (Figure 2(a)) as a function of frequency: the** line represents the exact
value and improved estimates (13), (14); the ) ) ) line corresponds to unimproved estimate (5). Frequency is
normalized by the resonance frequency u

0
"Jk/m; the loss factor at u"u

0
is equal to g

0
"0)02.
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Antiresonance occurs here at the natural frequency of the subsystem m
2
/k

2
/c

2
which

operates as a dynamic neutralizer with respect to the lower mass m
1
.

Uncorrected estimate (4) of the system total energy via the input impedance works well at
all frequencies except this antiresonance frequency*see dashed curves in Figure 4, the error
being drastic in the case of kinematic excitation of the system where the response at the
antiresonance frequency u

a
"2u

1
is dominant (Figure 4(b)). However, when estimate (8) is

used together with correction coe$cient (9), the estimated values of the total energy are
practically identical to the exact values at all frequencies including the antiresonance one
Figure 4. Normalized total energy of 2-d.o.f. system (Figure 2(b)) for force (a) and kinematic (b) excitation: exact
(**), unimproved estimate (4) via impedance (} } } } ) and improved estimate (8), (9) via impedance (]]]]).
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(crested lines in Figure 4). It is also seen from Figure 4 that corrected estimate (8) and (9)
work well independent of the type of external excitation.

3.3. ROD

A straight uniform rod of a "nite length l free of stress at one end executes longitudinal
vibrations under the action of an external harmonic load applied to the other end - see
Figure 2(c). The vibrations are assumed to be governed by the classical equation of
Bernoulli with the complex Young's modulus, E

c
"E

0
(1!ig

0
), g

0
being the material loss

factor. The input impedance of the rod is equal to

z (u)"!iz
0

sin kl

cos kl
, (15)

where z
0
"(E

c
oS2 )1@2 is the characteristic impedance, o is the mass density, S is the

cross-sectional area of the rod, k"u(o/E
c
)1@2"k

0
(1!ig

0
)~1@2 is the complex

wavenumber, and k
0
"u(o/E

0
)1@2.

When the rod is excited kinematically, that is to say, when the vibration velocity
amplitude at the driven end of the rod is kept equal to v

0
at all frequencies (never mind, what

force is needed for that), the maximum response of the rod occurs at the antiresonance
frequencies where input impedance (15) is maximum, Dcos kl D"min. This type of excitation
is the worst for unimproved estimate (4) via the input impedance. However, when improved
estimate (8) is used together with the correction coe$cient (12)

a(u):
Re(cos2 kl)

D cos2 kl D
, (16)

the estimated values of the total energy are practically equal to the exact ones at low
frequencies (k

0
l(8) and do not di!er from them by more than 10% at middle frequencies

(k
0
l(20)*see Figure 5. At higher frequencies (k

0
l'20), the di!erence increases. The

range of validity of the method itself is discussed in section 5.
Figure 6 shows the loss factor of the same rod excited this time by a force. As has been

shown in references [1, 2], this energy characteristic is the most sensitive to the estimation
errors in the total energy and, when unimproved estimate (4) is used, the loss factor can vary
in a large range of magnitude. Figure 6 demonstrates that when improved estimates (8), (16)
are used, the loss factor of the rod di!ers from the exact value no more than 6% in the range
k
0
l(20. The authors have also veri"ed that when the rod is driven by a vibration source

with an internal impedance, described in reference [1], the results of estimating the total
energy and other energy characteristics are similar to those shown in Figure 5 or 6,
independent of the value and type of the internal source impedance.

4. LABORATORY EXPERIMENT

To verify the proposed method of estimating the energy characteristics, a laboratory
experiment on a #exurally vibrating beam has been carried out. Some results of the
experiment that demonstrate the accuracy and e$ciency of the method, as well as
peculiarities of its practical implementation, are presented in this section.



Figure 5. Total energy of a kinematically excited rod: exact (**) and improved estimate (8), (16) via the input
impedance (]]]]). Material loss factor is equal to 0)05.

Figure 6. Loss factor of a forced vibrating rod: exact (**) and improved estimate (8), (16) via the input
impedance (]]]]). Material loss factor is 0)02.
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4.1. EXPERIMENTAL SET-UP

The schematic of the experiment conducted is shown in Figure 7. A rectangular uniform
beam of steel with dimensions in centimetres 4]5]150, suspended on two wires, is driven
harmonically in the horizontal plane by a shaker at one of its ends. The amplitudes and
phases of the driving force f (u) and acceleration a(u) at the driving point (as well as at other
points of the beam) are registered by a recorder as continuous functions of frequency and
entered, at discrete frequencies, into a computer. As an example of these primary



Figure 7. Experimental set-up.

Figure 8. Measured amplitudes of external force (a) and driving point acceleration (b) for a #exurally vibrating
beam.
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experimental data, the measured amplitudes of the force and driving point acceleration are
shown in Figure 8. One can see from the "gure that the shaker used is not a source of
constant amplitude force or of any kinematic quantity (acceleration, velocity, displacement).
The force acting on the beam is constant only in some frequency regions, e.g., 100}200 Hz,
while, at other frequencies, the amplitudes of the force and acceleration response vary
within the range of 2}3 orders of magnitude.
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Based on the measured functions f (u) and a (u), the velocity v(u)"ia(u)/u, the input
impedance z(u)"f (u)/v(u), its reciprocal*the input mobility, their derivatives with
respect to frequency, the energy estimates and all other necessary quantities in the
experiment are obtained numerically in a computer.

4.2. DIFFERENTIATION PROBLEM

Figure 9 depicts by crosses the imaginary part of the measured input impedance or, more
exactly, Im [z (u)] computed from the measured force and acceleration. As is seen from
Figure 9, in the frequency range of measurement, 40}700 Hz, the beam has three resonance
frequencies 92, 256 and 487 Hz, where the curve Im[z(u)] crosses the frequency axis, and
three antiresonance frequencies 67, 214 and 439 Hz, where the curve rapidly varies from
minimum to maximum. The quality factors of these resonances and antiresonances are
rather high, Q:200. Therefore, the rate of change of Im(z(u)] with frequency is also very
high. For such data, which moreover are contaminated with noise, numerical computation
of the derivatives with respect to frequency needed for the energy estimates becomes
a problem. The authors have tried most of the available standard methods of numerical
di!erentiation [9] but obtained rather poor results with large computation errors. One of
the reasons for such errors is, of course, bad conditioning of the di!erentiation as
a mathematical operation: small variations in a function can lead to large variations in its
derivative [3]. However, the main reason here is that the standard methods are based on
preliminary approximation (smoothing) of the data by polynomials which then are
di!erentiated analytically. Functions like those shown in Figure 9 require high orders of the
polynomials to be approximated with an acceptable accuracy. The orders of the
polynomials used in the standard methods are actually insu$cient for that purpose,
especially, near the antiresonance frequencies where the impedance varies sharply.
Figure 9. Imaginary part of the input impedance of a #exurally vibrating beam: measurements (]]]]) and
PadeH approximant (**).
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This di!erentiation problem has been overcome in the work with the help of the PadeH
approximation as a smoothing procedure for the input impedance and mobility. The PadeH
approximation, that is to say, the representation by a ratio of polynomials, follows, as was
shown in section 2, from the general representation of the impedance by ratio of the entire
functions and corresponds most closely to the spectral properties of a forced vibrating linear
system (such as the interchange of resonance and antiresonance frequencies, a "nite number
of these frequencies in any bounded frequency range, etc.). The PadeH approximation is, thus,
a natural representation for the input impedances and mobilities and, therefore, even low
order polynomials ratios may give good approximation. Namely, if the order of two
polynomials is twice the number of resonance (antiresonance) frequencies in the frequency
range under study, their ratio can provide very accurate approximation, not only to the
input impedance and mobility, but to their derivatives as well.

4.3. PADED APPROXIMATION OF THE MEASURED INPUT IMPEDANCE

As the beam has, in the frequency range of interest, 40}700 Hz, four resonance
frequencies (including u"0) and three antiresonance frequencies, the approximant of PadeH
may be written as

z (u)"!iua
4
<
n/1

(u#id
rn
)2!u2

rn
(u#id

an
)2!u2

an

. (17)

It contains 17 unknown parameters*four complex resonance frequencies X
rn
"u

rn
!id

rn
,

four complex antiresonance frequencies X
an
"u

an
!id

an
, and one real constant

a responsible for the low-frequency behaviour of the impedance. All these parameters
should be identi"ed to match the experimental data. The following simple identi"cation
procedure is proposed and proved to be very e$cient.

First, the real parts of the resonance frequencies, u
rn

, are determined. They correspond to
minima of the experimental force amplitude curve (Figure 8(a)) and are equal to u

rn
/2n"92,

256, 487 and 795 Hz. Similarly, the real parts of the antiresonance frequencies are determined
from the minima of the experimental acceleration amplitude curve in Figure 8(b),
u

an
/2n"67, 214, 439 and 740 Hz. Note that the highest frequencies, u

r4
and u

a4
, lie outside

the frequency range under study. They are included in the PadeH model (17) for better
approximation of the data at the upper end of the range, 600}700 Hz.

The next step is identi"cation of the parameter a from the low-frequency values in
Figure 9. The beam, being freely suspended, behaves at low frequencies as a mass,
z(u):!ium

eff
. Upon assuming that, at low frequencies, the beam is near perfectly rigid, it

can be shown from Newton's equations of mechanics that, with respect to the external force,
its e!ective mass is m

eff
"M/4, where M"oSl is the total mass of the beam (M"24 kg for

the beam used). The parameter a of model (17) is therefore equal to

a"
M

4

4
<
1

u2
an

u2
rn

"9)6 kg.

Finally, eight damping coe$cients d
rn

and d
an

are computed from the equality of the
moduli of the experimental and modelling impedances at the resonance and antiresonance
frequencies. Here, it was reasonably assumed that the impedance at each of these
frequencies, say u

rk
, is determined only by the damping coe$cient at this frequency, i.e., by

d
rk

, so that all other coe$cients, d
rn

and d
an

for nOk, may be set to zero. Thus, identi"ed
damping coe$cients for the beam under study are: d

rn
/2n"0)09, 0)32, 0)28 and 0)35 for
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the resonance frequencies, and d
an
/2n"0)16, 0)09, 0)19 and 0)34 for the antiresonance

frequencies. For these values of the parameters, the mean square deviation of the
experimental impedance is 1)2%. The solid line in Figure 9 corresponds to model (17).
The agreement with the experiment (crosses) is excellent.

The authors also tried the PadeH model of the type

z (u)"!iua
4
<
n/1

u!u
rn
#id

rn
u!u

an
#id

an

, (18)

which does not contain the negative eigenfrequencies and therefore is more simple than
approximation (17). However, the accuracy of representation (18) is lower than that of
approximation (17): the mean square deviation from the experimental data here is 7)6%.

4.4. ENERGY ESTIMATES

After the experimental impedance is approximated by rational function (17), its derivative
with respect to frequency can be easily derived analytically in form (11) and further used for
computing the improved estimates of the energy characteristics.

Such an obtained estimate of the total energy of the experimental beam is shown in
Figure 10 by the solid line. The dashed line and the stars in Figure 10 correspond to the
total energy obtained by two independent methods. As there do not exist methods for
measuring directly the total energy of an elastic system, these two independent methods are
based on computation of the energy in the classical #exural beam model of Bernoulli}Euler.
The "rst method uses the analytical expression for the total energy and experimentally
measured force amplitude and the beam loss factor (dashed line). In the second method,
Figure 10. Total energy of the #exurally vibrating beam: measured by the proposed method (**) and by two
independent methods (} } } } and * * *).
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the total energy is computed from the distribution function of the vibration amplitude
measured along the beam at several discrete frequencies (stars). As the beam in the
frequency range under study is adequately described by the Bernoulli}Euler model, all such
obtained values of the beam total energy were supposed to be close to its true values. More
details about these two methods can be found in Appendix A.

It follows from Figure 10 that there is good agreement between the total energy values
estimated by the improved method proposed in this paper and the values obtained by other
methods. The experiment has, thus, con"rmed that the proposed method gives reliable
energy estimates at least at low and middle frequencies, where the measurements were
made.

5. VALIDITY OF THE METHOD

As was pointed out above, the proposed method, when applied to not heavily damped
structures, works well at low and middle frequencies, where the lengths of the elastic waves
in the structure are greater than, or comparable with, its size. In this section, the frequency
range of the method validity is discussed in more detail.

The external forces and the vibrational response at the driving points (or, equivalently,
the input impedances (mobilities) and the velocity response) are the only quantities that are
used in the method for estimating the energy characteristics of the entire structure. For the
method to give the correct energy estimates, the response at the driving points should
contain complete information about the vibrational behaviour of all parts of the structure
or, in other words, the elastic waves re#ected from all the structure boundaries should reach
the driving points without noticeable attenuation due to damping. From this, it follows that
the method is applicable only to "nite structures which are not very much damped. It is
proved in references [1, 2] that the method gives mathematically exact energy estimates for
lossless "nite linear structures. When it is applied to a damped continuous structure, the
amount of information at the driving points may decrease and the method will give
underestimated values of the structural energy. It is evident, for example, in Figure 5, that
the estimated total energy of the rod as a function frequency is very similar to the exact
function but its value is less than the exact one at all frequencies, the di!erence between
them increasing with the structure length and frequency (damping is "xed). For this
particular structure as well as for some other simple continuous structures (uniform beam,
rectangular plate) of which the input impedance and any other quantities are available in an
analytical form, the authors have found and veri"ed that the decrease of the method
accuracy can be approximately characterized by attenuation of the frequency response
function (FRF) due to damping. More exactly, if h (g

0
, l) is the FRF of the structure

(displacement or strain at one end when a load is applied to the other end), g
0

and l being
the material loss factor and its dimension, the accuracy ac of the method de"ned as the
energy ratio E

imp
/E

ex
(at resonance frequencies) is approximately described by the function

Dh (g
0
, l)/h(0, l) D2. It gives

ac (g
0
, u, l):cosh~2(dl) (19a)

for one-dimensional structures (rods, beams), and

ac(g
0
, u, l

1
, l

2
):cosh~2(dl

1
) cosh~2(dl

2
) (19b)



IMPROVED ESTIMATES FOR VIBRATION ENERGY 699
for two-dimensional structures (l
1
]l

2
-plates). Here, d is the coe$cient of spatial attenuation

of the normal wave exp (ikx!iut) in the structure: d"Im(k), k is the wavenumber. E.g., for
the longitudinally vibrating rod one has

d"k
0
Im(1!ig

0
)~1@2"

u
c
0S

J1#g2
0
!1

2(1#g2
0
)

* see also equation (15). For #exurally vibrating beams and plates, the equation for d is
a little more complicated.

If a
0

is the required accuracy, then the inequality

ac*a
0

(20)

with ac being function (19), approximately determines the range of validity of the method.
For example, if the material loss factor of the rod studied above is equal to g

0
"0)05 the

method provides the energy estimates with accuracy a
0
"0)8 (i.e., with the relative

error)20%) up to the frequency k
0
l"25, which corresponds to the eighth natural

frequency of the rod. If the loss factor is g
0
"0)01, the frequency range of validity extends to

the 40th natural frequency, etc. Inequality (20) can also be rewritten in terms of the rate of
modal overlap. Then, for example, 20% error will be provided if the mode frequency band is
less than one-third of the di!erence between adjacent eigenfrequencies.

It should be noted that, when the input impedance or mobility is available analytically,
the exact values of all the energy characteristics can be reconstructed in any "nite frequency
range from the estimated values by means of the correction coe$cients introduced above
and by compensating the attenuation due to damping (19).

The correct values of the energy characteristics can also be reconstructed (and by this, the
frequency range of the method validity can be increased) when some of the modal
parameters of the structure are available. For example, if the input mobility of a rectangular
simply supported l

1
]l

2
-plate is known in the form [1]

>"A
M
+

m/1

N
+
n/1

c
mn

h4!h4
mn

(1!ig
0
)
, (21)

where h"kl
1
, is the dimensionless #exural wavenumber, h2

mn
"n(m2#n2/b2 ) is the (m, n)th

resonance dimensionless frequency, b"l
1
/l
2
, the correct values of the plate total energy

(and hence rest of the energy characteristics) can be obtained with the help of estimate (5) via
the input mobility together with the correction coe$cients

b
mn
"

(h4!h4
mn

)2!g2
0
h8
mn

(h4!h4
mn

)2#g2
0
h8
mn

(22)

introduced for each term of sum (21)*see also equation (14). The authors have veri"ed that
these improved estimates practically coincide with exact values in the frequency band where
all the resonance frequencies h2

mn
are taken into account in equation (21). The reconstruction

of the exact energy characteristics from the mobility estimates became possible in this case
due to the additional information about global vibrational behaviour of the structure that
the modal parameters, c

mn
and h

mn
, provide. Thus, if beside input impedance or mobility,

some of the modal parameters (obtained, e.g., from FE-analysis) are available, the frequency
range of the method validity can be expanded. In the limit, when the parameters of all
N modes of a linear N d.o.f. system are known, the method gives the exact values of the
energy characteristics at all frequencies.
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Practically, the most important is the case when the input impedance or mobility is
available from measurement, and nothing else is known about the structure under study.
(This is just the case the proposed method has been developed for.) As follows from the
results of section 4, to obtain the estimates in this case, one should "rst describe the
measured impedance by PadeH model (17) or (18) and identify its parameters, and then
perform the necessary computations. The frequency range of the method validity is
determined here by the accuracy of the PadeH approximation or, more exactly, by the
limitations of the parameter identi"cation procedure used. The simplest procedure
employed in section 4 is based on the assumption that the peaks of the vibration response
(see Figure 8) are distinctly separated from each other, and the di!erence between two
adjacent resonance frequencies is at least 3 times greater than the width of the resonance
peaks. This comprises low and middle frequencies if the structure is not heavily damped
(g

0
(0)1). So at present, it may be asserted that the proposed method works well just in this

frequency range. However, the range can be increased if a more general procedure for
identi"cation of PadeH model parameters is used. Such a procedure can be developed, most
likely, by incorporating one of the advanced methods for parameter identi"cation known in
modal analysis [10, 11].

6. MAIN RESULTS AND CONCLUSION

The e$cient method for estimating the energy characteristics of a linear forced vibrating
structure, proposed earlier in references [1, 2], is improved in this paper: simple correction
coe$cients are derived that make the estimates accurate at low and middle frequencies. The
improved method is validated by computer simulations and laboratory experiment. In the
experimental implementation of this method, commercially available facilities and
softwares (MATLAB) were used. The main implementation problem, the di!erentiation of
noisy measured data, is solved by using the PadeH approximation. From the results of this
paper it can be concluded that the proposed method is theoretically based, validated
su$ciently and now ready to be applied to the investigation of vibrations of practical
structures.

At the same time, the method seems to have a great potential and therefore can be further
improved. One of the possible improvements is its expansion to higher frequencies by using
a more sophisticated procedure for the PadeH model parameters identi"cation.
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APPENDIX A: TOTAL ENERGY OF THE BERNOULLI}EULER BEAM

Harmonic #exural vibrations of the classical one-dimensional model of Bernoulli}Euler
are governed by the equation [12]

B
L4w(x)

Lx4
!oSu2w (x)"0, (A1)

where w (x) is the displacement function, B"E
c
I is the #exural rigidity, o, l, S and I are the

density, length, cross-sectional area and second moment, E
c
"E

0
(1!ig

0
) is the complex

Young's modulus. The boundary conditions for the free beam driven by a force f at the end
x"l are

wA(0)"w@@@(0)"0, wA(l)"0, Bw@@@(l)"f (A2)

with primes denoting the derivatives with respect to co-ordinate x. The solution to the
boundary value problem (A1), (A2) is easily obtained as

w(x)"
f

(B/l3)

(sh kx!sin kx) (ch kl#cos kl)!(ch kx!cos kx) (sh kl#sin kl)

2 (kl)3 (1!ch kl cos kl)
. (A3)

The input impedance of the beam is equal to

z(u)"f /(!iuw(l))"iz
0
D
r
/D

0
,

where k"(oSu2/B)1@4 is the complex wave number, z
0
"(oSlB/l3)1@2 is the characteristic

impedance; D
r
"1!ch kl cos kl is the frequency equation of the free}free beam;

D
a
"cos kl sh kl/kl!ch kl sin kl/kl is the frequency equation of the beam free of traction at

one end (x"0) and hinged at the other end (x"l). When displacement function (A3) is
found, the kinetic and potential energies of the beam, ¹ and ;, can be computed as

¹"(1/4)o Su2 P
l

0

Dw (x) D2 dx, ;"(1/4)E
0
I P

l

0

DwA(x) D2 dx. (A4)

In the laboratory experiment conducted in this work, it was "rst veri"ed that the
experimental beam, in the frequency range of interest, 40}700 Hz, was su$ciently
accurately described by the Bernoulli}Euler model: it was found that the eigenfrequencies of
the model computed from the roots of equations D

r
"0 and D

a
"0 deviated less than 2)5%
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from the experimental resonance and antiresonance frequencies while de#ection function
(A3) was practically indiscernible from the displacement function measured at several
arbitrary chosen frequencies. The loss factor of the model, g

0
, which is unavailable a priori,

was identi"ed by the least-mean squares "tting acceleration response (A3) to the measured
acceleration amplitudes at the resonance frequencies. The result is, g

0
"0)004.

The total energy of the beam #exural vibrations, E"¹#;, was obtained, besides by the
proposed method, by two di!erent methods.

In the "rst method, it was computed by numerical integration of expressions (A4) with
de#ection function (A3) in which the force amplitude f and the material loss factor g

0
were

taken from the experiment.
In the second method, the de#ection function w (x

j
) was measured at 11 points along the

beam, j"1,2 , 11. Then, it was modelled by a linear combination of four #exural waves,

w (x)"a
1
e*kx#a

2
e~*kx#a

3
e~kx#a

4
e~k(1~x) (A5)

and the model coe$cients a
m

were determined from the closeness of the measured data and
equation (A5) in the least-mean squares sense. After that, function (A5) was substituted into
equations (A4), the energy E computed.
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